

Panchshil Plaza, 201-204, A Wing, 55 Hughes Rd, Gamdevi, Behind Dharam Palace, Mumbai – 400007 Tel.: +91 22 23634179 Fax: +91 22 23634392 Website: www.gandhispecialtubes.com GANDHI SPECIAL TUBES LTD. CIN : L27104MH1985PLC036004

Gandhi Special Tubes Ltd. delivers innovative and reliable tubular solutions to a diverse range of industries & niche markets in core sectors such as automotive and commercial vehicles, hydraulics, and general engineering. The Group manufactures client-specific seamless steel tubes, high-pressure tubes, welded tubes, and coupling nuts. We blend our technical expertise with uncompromising standards to provide top-notch quality with utmost precision.

We listen, we adapt, and we innovate to ensure that every interaction with us is a step towards achieving your goals. Our dedication for customer centricity along with our 38 plus years of tubular experience has been instrumental in nurturing long standing relationships, establishing us as the preferred choice for our customers.

Throughout our history, we have remained steadfast in our commitment to quality, flexibility, and reliability. We continue to embrace new challenges and strive to redefine industry standards, driven by our passion for precision and our desire to shape the future of tubular solutions.

which can lead to embrittlement & cracks. • Our steel tubes undergo bright annealing in an advanced German continuous Roller

Hearth Furnace. This method ensures that our tubes emerge bright and completely free from any scale formation, thereby eliminating the need for pickling or buffing.

Product Highlights

- Tubes are heat treated above the upper critical transformation temperature, resulting in exceptionally bright, scale-free, soft, and ductile tubes ideal for Hydraulic Systems and other engineering applications.
- Our tubes ensure an unparalleled level of reliability and ductility for various forming operations like bending, flaring, fluting, soldering, and ferrule biting.
- Tubes can be supplied with closer dimensional tolerance than permitted by various codes/specifications, subject to prior agreement.
- We offer flexible manufacturing options, delivering in small batch sizes or large orders, ensuring that you receive the quantity you want, precisely when you need it.
- **Product Range** Outer Diameter: From 3.0 mm up to 65 mm.
 - Wall Thickness: From 0.5 mm up to 7 mm.

Surface Coatings

Tubes can be supplied in Plain Oiled, Phosphated or in externally Electroplated condition. Different passivation's such Trivalent / Hexavalent Chrome passivation are offered based on client preference.

Applications

- Hydraulics High Pressure Diesel Fuel Injection Systems Automotive
- General Engineering Construction Equipment Shipping Equipment
- Fuel Lines Compressors Evaporative Coils Oil Lines Power Steering
- Farming Equipment Defense Bearings

• Tubes are exclusively manufactured out of fully Aluminium killed steel to avoid problem of ageing

Specifications

- EN 10305-1 & EN10305-4
- DIN 2391
- SAE J 524
- IS 3074
- JIS G 3445
- EN 10216-2
- DIN 73000
- ISO 8535
- BS 980

St 52

E 235

0.22

0.17

- BS 3059
 - IS 3601
 - DIN2445
 - DIN 17175
 - SAE J 1958
 - SA 179 • SA 210
 - JA 210
 - SA 334

Al (Min)

0.02

0.02

_

0.015

Common Specifications [Chemical Composition]

Steel Grade C% (Max) Si% (Max) Mn% P% (Max) S% (Max) St 30 Al 0.10 0.05 ≤ 0.55 0.025 0.025 St 37.4 0.17 0.35 ≥ 0.35 0.04 0.04 ≥ 0.40 0.025 St 35 0.17 0.35 0.025 0.35 ≥ 0.40 0.025 0.025 St 45 0.21

0.55

0.35

E 355 0.22 0.55 ≤ 1.60 0.025 0.015 0.020 Mechanical Properties

≤ 1.60

≤ 1.20

0.025

0.025

0.025

0.015

	ВК	NBK / + N						
Steel Grade	Tensile Strength Kg/Sq. mm (min)	Elongation at rupture (% min)	Tensile Strength Kg/Sq mm (min)	Upper yield point Kg/Sq mm (min)	Elongation at rupture (% min)			
St 30 Al	-			21.9	30			
St 37.4	-	-	35.7 – 49	24	25			
St 35	49	6	34.7 - 47.9	24	25			
St 45	59.2	5	44.9 - 58.1	26	21			
St 52	65	4	50 - 64.3	36.2	22			
E 235	-	-	34.7 – 49	24	25			
E 355	-	-	50 - 64.3	36.2	22			

Tube selection and sizing

Proper tube selection depends on several criteria :

1. Pressure

The operating pressure of the system is a factor in determining the material and wall thick ness of tube to be used. General - Recommendations are as shown below

2. Velocity and flow

The quantity of fluid that must pass through the line in a given period of time is a major factor in determining the inside diameter of tubing to be used.

3. Pressure drops Inside the tubes

4. Corrosion conditions

Proper tubing material and size depend also on corrosion conditions and various operating requirements of the system.

Calculations of Pressures

Calculation of pressures given are according to DIN 2413 case I for predominant static stress						
20 K.s.c. P = (bar) S.da	S					
Material Characteristic value K = 235 N/mm2 And DIN 2413 case III	F r s t					
For dynamic stress 20 K.s.c. $P =$, f v					

laterial Characteristic value K = 226 N/mm2 Permanent fatigue strength)

afety correction value S = 1.5 for static & lynamic stress.

factor c for consideration of wall thick ness divergence for static & dynamic tress = 0.8 for tube O.D. 4 to 5; 0.85 for ube O.D. 6 to 8; 0.9 for larger tube O.D.

Additional allowances towards other actors like corrosion, thinning of tubes vhile bending etc. are not considered for alculation of pressures.

General Recommendations on Seamless Tubes for Hydraulics

Tolerances according to DIN 239 Part-1/EN10305-1/EN10305-4 Material St.37.4/E235+N (Fully Aluminium Killed Steel)

da tube ø mm	Tolerance	S Wall Thikness mm	D Tube ID mm	Design B	Pressure ar	Brust Pressure bar	Weight Kg./m		da tube ø mm	Tolerance	S Wall ID Thickness mm	D tube ID ø mm	Design Pre DIN2	ssure Bar 413
				Case I	Case III								Case I	Case II
4		0.5	3	313	274	1160	0.047		22		1	20	128	118
4	± 0.08	0.75	2.5	409	393	1820	0.067		22		1.5	19	192	174
4		1	2	522	502	2950	0.075		22	± 0.08	2	18	256	228
5	± 0.08	1	3	432	416	2120	0.099		22		2.5	17	320	280
6		0.75	4.5	333	289	1230	0.103		22		3	16	385	329
6		1	4	389	374	1680	0.123		25		2	21	226	202
6	± 0.08	1.5	3	549	528	3050	0.166		25		2.5	20	282	249
6		2	2	692	665	-	0.197		25	± 0.08	3	19	338	294
6		2.25	1.5	757	728	-	0.208		25		4	17	394	379
8	0.00	1	6	333	289	1190	0.222		25		4.5	16	437	420
8	± 0.08	1.5	5	431	414	1860	0.240		25		5	15	478	460
0		2	4	247	528	3020	0.270		28		15	25	151	139
0		2.5	0	2020	2/0	970	0.337		28		2	24	201	182
10		15	7	373	358	1380	0.222		28	± 0.08	2.5	23	252	224
10	+ 0.08	2	6	678	440	2100	0.314		28		3	22	302	265
10	10.00	25	5	576	553	3180	0.462		28		4	20	403	343
10		3	4	666	641	-	0.518		28		5	18	434	417
12		1	10	235	210	760	0.271		30		2	26	188	171
12		1.5	9	353	305	1150	0.388		30		2.5	25	235	210
12	± 0.08	2	8	409	393	1580	0.493		30	± 0.08	3	24	282	249
12		2.5	7	495	476	2600	0.586		30		4	22	376	323
12		3	6	576	553	3200	0.666		30		5	20	409	393
12		3.5	5	651	627	-	0.734		35		2	17	212	191
14		1	12	201	182	620	0.321		35		2.5	16	282	249
14		1.5	11	302	265	940	0.462		35	± 0.15	3	15	353	305
14		2	10	403	343	1340	0.592		35		4	14	373	358
14	± 0.08	2.5	9	434	417	1760	0.709		35		5	13	426	410
14		3	8	507	487	2400	0.814		35		6	12	478	460
14		3.5	7	576	553	3220	0.906		20		2.5	22	194	149
14		4	6	641	616	-	0.986		20		2.5	22	222	200
15		1	13	188	171	590	0.345		38	+ 0 15	4	30	297	260
15		1.5	12	282	249	980	0.499		38	1 0.15	5	28	371	319
15	± 0.08		11	376	323	1250	0.641		38		6	26	390	375
15		2.5	10	409	393	1690	0.771		38		7	24	446	429
15		3	9	478	460	2120	0.888		42		2	38	134	124
16		1	14	176	160	540	0.370		42	+02	3	36	201	182
16		1.5	13	264	234	820	0.536		42	2 0.2	4	34	269	238
16	± 0.08	2	12	353	305	1170	0.691		50	. 0.2	4	20	220	
16		2.5	11	386	372	1470	0.832		50	± 0.2	0	38	338	-
16		3	10	452	435	1920	0.962							
18		1	16	157	143	510	0.419							
18		1.5	15	235	210	780	0.610							
18	± 0.08	2	14	313	274	1040	0.789							
18		2.5	13	392	335	1320	0.956							
18		3	12	409	393	1830	1.110							
20		1.5	17	212	191	570	0.684						-	-
20		2	16	282	249	920	0.888							
20	± 0.08	2.5	15	353	305	1220	1.079							
20		3	14	373	358	1450	1.258							
20		3.5	13	426	410	1720	1.424							
20		4	12	478	460	2080	1.578						10	

Quality & Inspection

Nothing is more important to us than Quality! We have implemented a robust quality management system that leaves no room for compromise. Our products conform to Indian & International standards and are manufactured with optimum process control and quality checks at every step from incoming raw material to dispatch of finished products.

Each tube is precisely crafted to meet the most stringent tolerances that our customers demand. Our manufacturing plant is fully equipped with a chemical laboratory, metallurgy department and advanced destructive and non-destructive testing equipment conducted by highly qualified engineers to ensure that each tube meets our clients desired specifications.

- Microhardness Test
- Tensile Test

Weight Kg./m

0.518

0.758

0.986 1.202

1.406

1.134

1.387

1.628

2.072

2.275

2.466

0.980

1.282 1.572

1.850

2.368 2.836

1.381

1.695

1.998

2.565

3.083 0.684

0.888

1.079

1.258

1.424

1.578

2.189

2.589

3.354

4.069 4.735

5.352

1.973

2.885

3.749 6.511

370

590

850

1040

670 920

1050

1520

1780

2120

450

620

770

920

-620

770

920

1250

1580

570 920

1220

1450

1720

2080 550

660

970

1350

390

580

850

- Hydrostatic Pressure Test
- Eddy Current Test
- Flattening, Flaring, Bending Test
- Surface Roughness Test

- Bubble Test
- Hardness Test
- Burst Test
- Salt Spray Test

• Chemical Composition • Metallurgical & Stereo Microscopy • Dimensional Checks

